Explainable Reasoning over Knowledge Graphs for Recommendation
Incorporating knowledge graphs into recommender systems has attracted increasing attention in recent years. By exploring the interlinks within a knowledge graph, the connectivity between users and items can be discovered as paths, which provide rich and complementary information to user-item interactions. Such connectivity not only reveals the semantics of entities and relations, but also helps to comprehend a user’s interest. However, existing efforts have not fully explored this connectivity to infer user preferences, especially in terms of modeling the sequential dependencies within and holistic semantics of a path. We have developed a new model named Knowledge-aware Path Recurrent Network (KPRN) to exploit knowledge graphs for recommendation.